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Abstract. We describe a spectral nested dissection algorithm for computing orderings appropriate for

parallel factorization of sparse, symmetric matrices. The algorithm makes use of spectral properties of the

Laplacian matrix associated with the given matrix to compute separators. We evaluate the quality of the

spectral orderings with respect to several measures: fill, elimination tree height, height and weight balances
of elimination trees, and clique tree heights. Spectral orderings compare quite favorably with commonly used

orderings, outperforming them by a wide margin for some of these measures. These results are confirmed

by computing a multifrontal numerical factorization with the different orderings on a Cray Y-MP with eight

processors.
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1. Introduction. The parallel solution of large, sparse, symmetric positive definite

systems requires the prior computation of a good parallel ordering of the matrix such that

it can be factored efficiently. In this paper, we describe a spectral algorithm for computing

good parallel orderings.

We employ a divide and conquer scheme, known as nested dissection, for computing the

ordering. At a step of nested dissection, a vertex separator (a set of vertices whose removal

disconnects the graph into two parts) in the adjacency graph of the matrix is computed,

and the vertices in the separator are numbered last. Then the vertices in the two parts are

numbered recursively by the same strategy. Nested dissection and generalizations have been

described by George [9], Lipton and Tarjan [17], and Gilbert [12].

Thus the computation of a nested dissection ordering requires the identification of a

good separator of the adjacency graph. A good separator in this context should satisfy two

criteria: first, the size (number of vertices) of the separator should be small, and second,

the two parts obtained by removing the separator should have roughly equal sizes. The

first requirement controls the fill, and the second ensures load balance in the factorization

among the processors, since the two parts are mapped to two subsets of processors of equal

cardinality.

In earlier work [25], we had described a spectral algorithm for computing vertex separa-

tors of graphs. With the given matrix (and its adjacency graph) we associate a matrix called

the Laplacian matrix, and compute initially an edge separator using the components of an
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eigenvector of the Laplacian matrix. A maximum matching in a bipartite subgraph induced

by the edge separator can then be used to obtain a vertex separator. In this paper, we report

a spectral nested dissection algorithm that recursively employs the spectral separator algo-

rithm to obtain parallel orderings. We have tested the performance of the spectral nested

dissection algorithm on a set of large, sparse matrices, and. have compared spectral orderings

with two commonly employed orderings. We also report the comparative performance of a

sparse matrix factorization algorithm on a Cray Y-MP/8 when spectral nested dissection

and other orderings are used to preorder the matrix.

This paper is organized as follows. Section 2 contains background information on a

number of topics: the spectral approach to the graph partitioning problem, elimination

trees, supernodes, and clique trees. The spectral separator and nested dissection algorithms

are described in Section 3. Experimental results on the quality of spectral nested dissection

orderings, comparisons with other ordering algorithms, and running times of a numerical

factorization code with the different ordering algorithms are included in Section 4. The

measures used to study the quality of the orderings include fill, elimination tree height,

weight and height balance of the elimination tree, and clique tree height. Our conclusions

and future research issues are described in Section 5.

2. Background. Given a symmetric matrix A, we associate a matrix Q called the

Laplacian matrix with it. Because it is usual to associate the Laplacian matrix with a graph

G, we can consider G to be the adjacency graph of A in what follows.

Let G = (V, E) be an undirected graph on IV I = n vertices. The n × n adjacency matrix

B = B(G) has element b_,_ equal to one if (v, w) E E, and zero otherwise. By convention

bv,_ is zero for all v E V. The rows and columns of the matrices associated with a graph

are indexed by the vertices of the graph, their order being arbitrary. Let deg(v) denote the

degree of vertex v, and define D to be the n × n diagonal matrix with d,,, = deg(v). The

matrix Q = Q(G) = D - B is the Laplacian matrix of G.

The spectral properties of Q have been studied by several authors; see the two recent

surveys by Mohar [22, 23]. It is well-known that Q is a singular M-matrix. Let the eigenvalues

of Q be ordered _1 = 0 _ A2 _< ... _,_. An eigenvector corresponding to A1 is _e, the vector

of all ones. The multiplicity of the zero eigenvalue is equal to the number of connected

components in the graph. If G is connected, then the second smallest eigenvalue _2 is

positive. We call an eigenvector y corresponding to _2 a second eigenvector.

Fiedler [7, 8] has studied the properties of the second eigenpair A2, y_. He has investigated

the partitions of G generated by the components of the eigenvector y. One of his reshlts of

interest in this paper is the following

THEOREM 2.1. Let G be a connected graph, and let y be an eigenvector corresponding

to _2. For a real number r >_ O, define V_(r) = {v E V : y_ >_ -r}. Then the subgraph

induced by V_(r) is connected. Similarly, for a real number r <_ O, let the set V2(r) = {v E

V: y, <_ M}. The subgraph induced by V2(r) is also connected.

In both sets V1 and ½, it is necessary to include all vertices with zero components for

the theorem to hold. A corollary to this result is that if y. _ 0 for all v E V, then the

subgraphs induced by the sets P = {v E V : y. > 0} and N = {v E V : y. < 0} are both

connected subgraphs of G.
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In [25], two lower bounds on the sizes of the smallest vertex separators in a graph

in terms of the eigenvalues of the Laplacian matrix Q(G) were obtained. These results

were obtained by applications of the Courant-Fischer-Poincar_ minimax principle and the

Hoffman-Wielandt theorem. The reader is referred to this paper for further details, an

analysis of the model grid problem, and for a survey of spectral approaches to the partitioning

problem.

In related work, spectral edge separator algorithms have been applied to the graph

partitioning problem in the context of an MIMD implementation of an explicit Euler solver

for CFD problems on unstructured grids [28, 29], and have been shown to have superior

performance compared to other partitioning methods.

We now briefly mention a few recent developments concerning the partitioning and order-

ing problems. Liu [19] has described a hybrid approach that combines aspects of minimum-

degree and nested dissection for computing orderings. Miller, Teng, and Vavasis [21] have

introduced a geometric approach to computing vertex separators for a class of graphs embed-

dable in d dimensions. Agrawal, Gilbert, and Klein [1] have implemented a nested dissection

approach which produces orderings that are optimal within logarithmic factors with respect

to various measures. In this approach, separators are computed by solving a multicommod-

ity flow problem as discussed by Leighton and Rao [15] and others. It remains to be seen if

the latter two approaches could yield practical sparse matrix ordering algorithms.

Elimination trees, supernodes, and clique trees. In comparing the quality of

different orderings in Section 4, we will refer to the elimination tree and a clique tree associ-

ated with a given ordering. Both of these are fundamental data structures in sparse matrix

algorithms, and for completeness, we provide a brief discussion.

Let L denote the Cholesky factor of the given symmetric positive definite matrix A, and

let G(L) denote the (undirected) adjacency graph of L. The elimination tree of L (and of

A under the given ordering) is a directed tree T = (V, ET), whose vertices are the columns

of L, with a directed edge (v, w) E ET if and only if the lowest-numbered row index of a

subdiagonal nonzero in the v-th column of L is w. (The edge is directed from v to w.) The

vertex w is the parent of v, and v is a child of w.

We define the higher adjacency set hadj(v) to be the set of all vertices x adjacent to

v in G(L) such that x is numbered higher than v. A vertex w is the parent of vertex v in

the elimination tree if and only if the lowest-numbered vertex in hadj(v) is w. We refer the

reader for additional details about elimination trees to a comprehensive survey provided by

Liu [20].

The multifrontal algorithm for sparse Cholesky factorization makes use of groups of

columns called supernodes to achieve vectorization and thereby high computational perfor-

mance during the numerical factorization. Supernodes can be identified from the elimination

tree by merging vertices according to their hadj sets. Formally, a group of vertices v0,..., vk

forms a supernode if

(i) the vertices form a path in the elimination tree,

(ii) all interior vertices of the path have only one child, and

(iii) hadj(vi) = {v,+l} U hadj(v,+l), for i = 0, ..., k - 1.

(This has been called a fundamental supernode by Ashcraft et al. [2]; slightly different deft-
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nitions of supernodeshave alsobeenused.) A supernodecorrespondsto a densesubmatrix
with columnshaving a nestednonzerostructure given by condition (iii) above.

It is well-known that G(L) is a chordal graph, and thus has all of its maximal cliques of

the form v U hadj(v) for some vertex v. The clique intersection graph is an edge-weighted

graph whose vertices are the maximal cliques of G(L), with an edge joining two maximal

cliques if the intersection of the two cliques is not empty. The weight of this edge is the

number of vertices in the intersection of the two cliques. A clique tree is a maximum-weight

spanning tree of the clique intersection graph (viewed as a rooted tree with an appropriate

choice of a root clique). In [16], a more restrictive definition of a clique tree is given, which

will not be repeated here. Clique trees have been applied in various contexts in sparse matrix

algorithms: in addition to the above paper, see [4, 13, 26, 27].

3. The spectral nested dissection algorithm. In this section, we first describe a

spectral algorithm to compute vertex separators that was designed in [25], and then discuss

how the separator algorithm can be recursively used to compute elimination orderings.

The vertex separator algorithm is shown in Figure 1. It initially partitions the vertex

set of the graph G into two subsets with 1 and n - l vertices, for a prescribed value of I.

This is accomplished by means of the vertex ordering given by the components of a second

eigenvector of the Laplacian matrix of G. It then computes the edge separator between the

two subsets, and finds a minimum vertex cover in the bipartite graph induced by the edge

separator to obtain the desired vertex separator.

1. Compute an eigenvector x_2 to a desired tolerance e;

find the l-th smallest value xt of its components;

2. Partition the vertices of G into two sets:

A' = {vertices with x. < xz}; B' = Y \ A';

If ]A'] > l, move enough vertices with components equal to xt

from A' to B' to make IA'I = l;

3. Let Ai be the set of vertices in A' adjacent to some vertex in B';

Let B1 be the set of vertices in B' adjacent to some vertex in A';

Compute H = (A1, B1, El), the bipartite subgraph induced by the vertex sets A1, B1;

4. Find a minimum vertex cover S of H by a maximum matching;

Let S = A_ U B_, where A_ C A1, B_ C B1;

S is the desired vertex separator, and separates G into subgraphs with

vertex sets A = A' \ A_, B = B I \ B_.

FIG. 1. The spectral partitioning algorithm.

The value of l can be chosen to make the initial part sizes as desired. We make two

choices in the next Section: one is to make 1 the index of the median value of the eigenvector

components. This leads to a partition with roughly equal sizes for the final parts A and B.

Another choice is to make l equal to the number of vertices with components of one sign.

If there are no vertices with zero components, then by Theorem 2.1 we know that the two

subgraphs induced by the initial partition are connected.
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i := 0; Go := G;

hum := 0; make the vector perm the empty vector;

While num< IV[ do

Find the connected components C1, C2,..., Ck of Gi;

for/:= 1,...,k do

if ICjl > size then

Copy Cj to a local adjacency structure;

Compute a vertex separator Sj of Cj by the spectral separator algorithm,

using a second eigenvector computed to a tolerance ¢j;

else

s/ := cj;
end if

G' := \ S/;
num := hum + IS/I;

Append S i to perm;

end for

Gi+l := G'; i := i + 1;

end while

Reverse the ordering of vertices in perm.

FIG. 2. The spectral nested dissection ordering algorithm.

The spectral nested dissection algorithm is shown in Figure 2. It computes the vertex

ordering stored in a vector perm by repeatedly calling the spectral separator algorithm to

obtain vertex separators in subgraphs, until the subgraphs are small enough. The value of

the parameter size determines when a subgraph is small enough to be ordered arbitrarily. It

is necessary to choose the tolerance to which a second eigenvector of a subgraph is computed

in accordance with the number of vertices in the subgraph to ensure the desired precision

and speed in the eigenvector computations.

4. Experimental Results. In this section, we report experimental results obtained

from the Spectral Nested Dissection Ordering Algorithm, and provide comparisons with the

Multiple Minimum Degree (MMD), and the Sparspak Nested Dissection (AND) ordering

algorithms.

We consider two variants of the spectral ordering algorithm, SND1 and SND2, that

differ in the way in which the components of the second eigenvector are partitioned. SND1

partitions the components according to the median value, and SND2 partitions components

according to their signs. The minimum degree ordering is currently the most popular ordering

because of the low fill that it incurs. We report results using Liu's [18] Multiple Minimum

Degree Ordering Algorithm (MMD), since it is an efficient implementation of this ordering.

The Sparspak Nested Dissection Algorithm (AND) from Sparspak [10] uses breadth-first-

search from a pseudo-peripheral vertex to obtain vertex separators from level structures.

The spectral algorithms make use of the Lanczos algorithm to compute a second eigen-
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Problem n IA] Description

GR 80 x 80.9 6,400 25,122 80 x 80 nine point grid

PWR8235 8,235 12, 674 Power problem from F. Alvarado

BARTH4 6,091 17,401 Connectivity matrix, four element air foil, see [3, 14, 29

BARTH 6,691 29,748 Irregular mesh for one element airfoil

SKIRT.2 7,928 59,379 Shuttle aft skirt model, see [5]

largest connected component

SRBEDDY 10,429 46,585 Shuttle rocket booster model, by E. Pramono

BARTH5 15,606 45,878 Connectivity matrix of four element air foil,

refined grid see [3, 14, 29]

SPHERE6 16,386 49,152 Triangulation of the sphere based on a program

by J. Richardson, TMC

PWT 36,519 144,794 Connectivity matrix, see [5]

NASA Ames pressurized wind tunnel

TABLE 1

Test problems.

vector. The starting vector w was chosen with W_ = i - (n + 1)/2, which makes it orthogonal

to the first eigenvector of the Laplacian matrix, the vector of all ones. For the results of

SND1 and SND2, the following termination criterion for the Lanczos iteration was used. Let

1 if 1 < 2--6(1) e = -
2 -6 , otherwise

The iterations are terminated when the usual bound on the difference between the true and

computed eigenvalues (equal to the product of the 2-norm of the residual vector and the

last component of an appropriate eigenvector of the tridiagonal matrix) was no larger than

_, or 600 Lanczos steps had been performed. Explicit orthogonalization against the first

eigenvector was employed in the Lanczos algorithm, as explained in [25].

Our programs were written in Fortran, and all experiments were run on a Cray Y-MP/8.

We tested the algorithms on several problems from the Boeing-Harwell collection [6], and on

finite-element problems obtained from NASA Ames Research Center. Here we report results

for the largest problems from our test set, and these are shown in Table 1. Here n is the

order of the matrix, and IAI denotes the number of nonzeros in the strict lower triangle of

the matrix A.

4.1. Quality of the orderings. We use several criteria to measure the quality of the

parallel orderings produced by the four ordering algorithms. As in the sequential context,

fill is an important measure of the storage and the arithmetic required for the factorization.

A simple and effective criterion of the measure of concurrency in the factorization is the

height of the elimination tree [20]. However, it is well-accepted by now that the 'shape'

of the elimination tree is also an important criterion for the execution time of the parallel

factorization. In general, a better 'balanced' elimination tree can be partitioned and mapped



to a set of processorsto obtain good efficiencies in the factorization. In the next paragraph,

we describe one approach to computing measures of the balance of the elimination tree.

Another measure useful especially on a massively parallel SIMD machine is the height of

a clique tree. It should be noted that unlike the elimination tree, several clique trees may

be obtained from a given ordering. However, experimentally the variation in the heights is

small for the sizes of the problems that we have worked with, and hence we report results

for clique trees produced by a clique tree algorithm described in [16].

Now we describe two measures of the balance of a rooted tree T on n vertices. It is

more convenient to define the imbalance rather than the balance of T; the smaller the value

of the imbalance, the better balanced the tree. Let value(v) be a nonnegative value assigned

to each vertex of T. We define imbalance(v), the imbalance of a vertex v as

imbalance(v) = {

O,

max{value(w)lparent(w ) = v}-

min{value(w)lparent(w ) = v},

if v is a leaf,

otherwise.

We obtain the imbalance of a tree T by summing imbalance(v) over all the vertices of T.

We choose the variable value(v) in two different ways. If value(.) =- height(.), where

height(v) is the length of the longest path from a leaf of T to v, then we obtain the height

imbalance of T. A second choice is value(.) =_ weight(.), where weight(v) is the number of

vertices in the subtree rooted at v (including v). Now we obtain the weight imbalance of a

tree. Note that more sophisticated measures can be used for value(v): for instance, it could

be chosen as the number of arithmetic operations associated with v.

The definition of imbalance(.) that we have used merits some comment. If a vertex v

has only one child, then from the definition given above, imbalance(v) = 0. A moment's

consideration of the elimination tree of the model grid problem ordered by optimal nested

dissection should convince the reader that the definition is appropriate for such a vertex. This

tree has each separator forming a long path, with the lowest numbered vertex in the separator

having two children, the latter being the highest numbered vertices in the separators at the

next level. Thus according to our definition, both a complete binary tree and a path have

zero imbalance; the former is more appropriate than the latter as a task graph in parallel

computation, and this can be inferred from their heights. However, both trees can be mapped

in a parallel processor with little imbalance in computational work. This observation also

points to the importance Of using both height and balance properties of the elimination tree

to evaluate the quality of a parallel ordering.

4.2. Comparison of the orderings. We now present our results in a series of Tables:

Table 2 reports fill, Table 3 compares elimination tree heights, and Table 4 compares height

and weight balances of elimination trees. Clique tree heights are reported in Table 5. All

the problems in this collection except for the power network problem PWR8325 arise in

the context of finite-element discretizations. The anomalous behavior of power network

problems is well-known in the literature. The power problems are almost tree-like, with

average vertex degrees bounded by about 1.5; as a consequence, they suffer little fill, and

have a large number of supernodes with small average supernode sizes.



Problem
GR 80 x 80.9
PWR8235
BARTH4
BARTH
SKIRT.2
SRBEDDY
BARTH5
SPHERE6
PWT

SND1
170,038
67,157

127,386
139,581
394,286
326,708
391,398
670,691

1,405,520

SND2
170,038
54,734

116,758
130,349
325,799
315,436
363,361
657,510

1,334,909

MMD
183,301
36,991

110,786
103,795
341,656
317,171
356,722
879,325

1,554,077

AND

183,071
163,590
194,883
214,235
443,185

• 379,620
618,873
665,557

1,592,935
TABLE 2

Comparison of fill.

Problem

GR 80 × 80.9

PWR8235

BARTH4

BARTH

SKIRT.2

SRBEDDY

BARTH5

SPHERE6

PWT

SND1

235

158

233

237

393

296

349

583

600

SND2

235

149

201

236

349

291

336

576

565

MMD

410

152

366

303

903

1,302

424

835

1,187

TABLE 3

Comparison of elimination tree height.

AND

299

549

488

401

559

472

810

607

821

Weoht

Problem

GR 80 × 80.9

PWR8235

BARTH4

BARTH

SKIRT.2

SRBEDDY

BARTH5

SPHERE6

PWT

SND1

2.31

122

2.64

3.03

19.8

5.44

6.99

7.98

29.5

Imbalance

SND2 MMD

2.31 17.1

131 232

6.82 31.8

8.63 26.9

12.8 81.4

7.O8 175

2O.6 61.2

13.0 29.1

32.8 263

AND

17.8

824

27.5

37.8

48.5

28.7

118

35.0

168

Height Imbalance

SND1 SND2 MMD

1.53

8.74

1.53

1.81

2.84

1.33

3.87

3.74

6.78

1.53

7.80

1.96

2.41

3.08

1.73

4.68

4.01

7.66

AND

2.7O 2.13

13.0 65.6

7.17 4.23

4.61 5.36

16.5 8.54

24.9 5.46

11.5 11.8

4.79 6.38

17.3 21.2

TABLE 4

Comparison of elimination tree balances. All numbers have been scaled by a thousand for convenience.



Problem

GR 80 x 80.9

PWR8235

BARTH4

BARTH

SKIRT.2

SRBEDDY

BARTH5

SPHERE6

PWT

SND1

13

20

17

17

18

15

19

22

24

SND2 MMD

13 24

21 32

18 34

18 23

17 34

14 48

19 22

20 18

26 27

TABLE 5

Comparison of clique tree heights.

AND

15

53

20

24

22

19

25

21

24

The spectral orderings, SND1 and SND2, incur fill that is quite comparable with the

minimum-degree ordering MMD on this problem set. There are four problems where MMD

has the least fill, three for which both spectral algorithms have lower fill than MMD, and

two where SND2 has least fill. SND2 incurs less fill than SND1 on this set of problems.

The Sparspak nested dissection ordering AND usually suffers the greatest fill, and it can be

substantially larger than the three other orderings for some problems.

The elimination tree heights in Table 3 show that the spectral orderings have lower

elimination tree heights than MMD and AND. Again, SND2 leads to lower heights than

SND1, and on the average problem in this set, the MMD tree height is twice that of the

SND2 height. The maximum value of this ratio is 4.5 for SRBEDDY. Notice that there are

problems where AND leads to a smaller elimination tree height, and sometimes substantially

so, than the MMD ordering.

The balance statistics reported in Table 4 show that the spectral orderings have the

best balance properties. (The numbers in this Table have been scaled by a thousand for

convenience.) Not surprisingly, SND1 has the edge over SND2 in terms of both height and

weight balance, and the spectral orderings perform much better than MMD and AND. The

average ratio of the weight balance of the MMD and SND2 orderings is seven, with the

maximum value almost twenty five,.again for the SRBEDDY problem.

Table 5 reports the clique tree heights obtained from the clique tree algorithm in [16] for

the different orderings. Since the clique tree height behaves as O(log n) for graphs with good

separators, it is not surprising that the heights and the differences among them are much

smaller than that for elimination tree heights. (Elimination tree height for graphs with good

separators from two-dimensional problems behaves as O(x/_.) From the table, we can see

that the spectral orderings give shorter clique trees than the other two orderings for most

problems.

4.3. Numerical factorization results. The ultimate test of the quality of an ordering

is the running time of a factorization algorithm which employs that ordering. Hence we

report results of numerical factorization on a Cray Y-MP with eight processors for three

of the test problems. The numerical factorization code is a multifrontal code developed at

9



Cray by Yang [30],who kindly ran the experimentsfor us with the spectral orderings that

we supplied.

The multifrontal code makes use of supernodes to achieve vectorization and thereby high

Megaflop rates during the numerical factorization. On a vector machine like the Cray, the

larger the supernodes, the higher should be the expected degree of vectorization. Hence the

average supernode size is often increased by coalescing two or more supernodes together at

the expense of additional fill. A parameter Relaxation controls the additional fill permitted

in each coalesced supernode. From now on, the word supernode will indicate a coalesced

supernode.

There are two more parameters Grouping, and Blocking that control the concurrency in

the multifrontal factorization. We explain these parameters in the next few paragraphs.

The set of supernodes is divided into two subsets: each supernode in the first subset is

computed by a single processor, and all processors cooperate to compute each supernode in

the second subset. The former is called the outer-parallel subset, and the latter, the inter-

parallel subset. The value of Grouping determines the partition: If the update matrix of a

supernode is no greater than Grouping, then the supernode is placed in the outer-parallel

subset, otherwise, it is placed in inter-parallel subset. Thus the larger the value of Grouping,

the larger the outer-parallel subset.

All supernodes in the outer-parallel subset are organized into groups by some grouping

algorithm(see [30]). The update matrices of a group of supernodes in the outer-parallel subset

are stored in the same block of the shared memory, and will be assigned to a single processor

which is responsible for the computations associated with them. The parameter Blocking

specifies the size of a block. It should be clear that the value of Blocking can not be smaller

than the value of Grouping.

The parallelism in the factorization process is related to the number of CPU's and how

large the parameters are. Larger values of Grouping will include more supernodes into the

outer-parallel subset. Zero values for Grouping and Blocking ensure that all supernodes

belong to the inter-parallel subset. In the initial part of the factorization, this leads to

poor processor utilization since all processors are involved in computing each supernode,

and these supernodes are small in size. Towards the end of the factorization, the number of

supernodes are fewer, and these are relatively large in size, and hence processor utilization

will be good. On the other hand, extremely large values of Grouping and Blocking put all

supernodes into the outer-parallel subset. Initially this leads to good processor utilization,

since a large number of small supernodes are assigned to each processor; but towards the

end, the few large supernodes that remain to be factored will be computed by individual

processors, instead of being computed by all processors concurrently.

Thus the concurrency in the factorization strongly depends on these parameters. Unfor-

tunately, no recommendations have been made in [30] for optimal values of these parameters:

in general, these parameters depend in a complex manner on the size of the supernodes and

the structure of the supernodal elimination tree. Hence this is a good context for testing the

influence of balance in the elimination trees on parallel factorization times.

Table 6 compares the numerical factorization times for three of the larger problems in

our test set with the SND1 and MMD orderings on one CPU of a Cray Y-MP; Table 7
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Factorization times

SND1

Problem 0 64 128 256 512

SRBEDDY 0.4367 0.2806 0.2554 0.2467 0.2463

BARTH5 0.6236 0.3593 0.3299 0.3242 0.3261

PWT 1.8590 1.2310 111580 1.1340 1.1330

MMD

SRBEDDY 0.4248 0.2816 0.2538 0.2457 0.2432

BARTH5 0.5803 0.3548 0.3272 0.3101 0.3112

PWT 1.9600 1.4420 1.4010 1.3540 1.3370

On seconds) on

TABLE 6

one processor of a Gray Y-MP/8 under different values of relaxation.

compares parallel factorization times of the two orderings on all eight CPUs of the Y-MP.

The results for one processor are comparable for both SND1 and MMD orderings. On

BARTH5, MMD incurs less fill than SND1, and these are reflected in the factorization times

as well. On PWT, SND1 suffers less fill than MMD, and again, this is reflected in the times

required for the factorization. Also, as the value of Relaxation is increased, the supernode

sizes increase, and the factorization times decrease, indicating better vectorization.

When we consider the results for eight processors, it is immediately apparent that the

height and balance of the elimination tree play a crucial role in the performance. Note that

for SND1, as the parameters Grouping and Blocking increase, the execution times gracefully

decrease, with at most a slight increase in times for the largest values of these parameters.

The substantial decrease in running times as these parameters attain reasonable values should

be noted. Also, the parallel factorization times are smaller with the SND1 ordering rather

than with the MMD ordering.

The dependence of execution times on the parameters Grouping and Blocking is quite

irregular when the MMD ordering is used. Notice that for the SRBEDDY and BARTH5

problems, these initially decrease and then substantially increase, as these parameters in-

crease in value.

These results point to the fact that the elimination tree height and balance are will

be even more important for good efficiencies for parallel factorization on massively parallel

machines.

4.4. Execution time of spectral nested dissection. In order to give an estimate

of the running time of the spectral nested dissection algorithm, we have implemented a

version of SND1 for fast execution on a single processor of the Cray Y-MP/8. We emphasize

that this version is only experimental at this time, and its main purpose is to demonstrate

that spectral nested dissection can generate orderings in time roughly the same order of

magnitude as MMD. This version running on the Cray, which we will call here SND-C, is

derived from SND1, but uses a fast version of the Lanczos algorithm described in detail in

[24] (also used in [28]). Another difference is that in SND-C there is no matching employed

to compute the vertex separators from the edge separators; instead, the smaller endpoint set

of the edge separator is taken to be the vertex separator.
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SND1

0 512 0 512

Grouping/Blocking

o/o
2000/3001

5000/5001

8000/8001

1OO00/10O01

0 512

SRBEDDY BAITTH5

0.3491

0.0723

0.0558

0.0540

0.0535

PWT

0.4109 0.2358

0.0853 0.0657

0.0691 0.0453

0.0721 0.0471

0.0787 0.0504

0.6345

0.1113

0.0943

0.0897

0.0949

1.7130

0.4383

0.3189

0.3559

0.2739

0.8662

0.2991

0.2208

0.1825

0.1764

MMD

Grouping�Blocking SRBEDDY BARTH5 PWT

o/o
2ooo/3ool
5000/5001

8000/8001

10000/10001

0.4091 0.2362

0.0891 0.0705

1.1670 2.0610

0.4042 2.5850

0.4115 0.9257

0.6181 0.3472

0.0976 0.0640

1.2430 0.0835

0.1824 0.1806

0.1160 0.2799

1.5320

0.4043

0.3476

0.3299

0.3224

0.9150

0.3333

0.2697

0.2489

0.2467

TABLE 7

Factorization times _n seconds) on 8 processors of a CrayY-MP/8 underthe relaxation 0 and 512.

Tolerance Nonzeros

in L

0.1

0.01

0.001

0.0001

725,784

701,977

678,331

652,730

TABLE 8

Time

(sec.)
3.06

6.53

14.3

21.8

Execution times (on one processor) of a Cray Y-MP/8 and fill for the SND-C implementation when different

tolerances are used for SPHERE6.

We first point out that spectral nested dissection permits a tradeoff between the running

time of the algorithm, and the quality of the computed ordering, as measured by the amount

of fill in the Cholesky factor L. This tradeoff is controlled by the tolerance s, which has

been set for SND1 and SND2 in (1). Generally, a smaller tolerance will result in a longer

execution time, but in less fill, and vice versa. Table 8 demonstrates this behavior using the

SPHERE6 matrix.

We see from Table 8 that the choice of _ in (1) is a compromise between a very short

execution time and an improved ordering. When the tolerance in SND-C is set to 0.01, then

on a subset of the sample problems the execution times in Table 9 are obtained. These are

compared to the execution time for MMD on a single processor of the Cray Y-MP/8.

The fill-in for SND-C for the problems in Table 9 is similar to the values reported

for SND1 in Table 2. The execution times for SND-C are a factor of five to twelve times

slower than for MMD. However, these results are from an initial implementation of the SND

algorithm, and there are several enhancements that could potentially improve the running
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Matrix

BARTH4

BARTH

SKIRT.2

SRBEDDY

BARTH5

SPHERE6

SND-C

3.18

4.04

8.31

6.63

9.44

6.54

TABLE 9

MMD

0.31

0.38

0.99

0.49

0.83

0.86

Execution times 5n secs) for SND-C and MMD algorithms on one processor of a Cray Y-MP/8.

time of the algorithm.

We list a few of these potential enhancements now. It is clear that the running time

of the algorithm depends on the accuracy with which a second eigenvector is computed.

This tolerance should be set in a dynamic manner, with high accuracy demanded of the

large graphs to be partitioned at the beginning of the nested dissection, and low accuracies

required of the smaller subgraphs towards the end. Indeed, subgraphs containing fewer

vertices than an appropriately chosen threshold could be ordered using minimum degree or

some other fast heuristic. Another enhancement is to compute the eigenvectors in parallel

by means of a a parallel Lanzcos algorithm.

It should be borne in mind that the history of the development of the MMD algorithm

shows [11] that a number of incremental improvements over a long period of time have

given the MMD algorithm the speed it has today. We anticipate that the enhancements

listed in the preceding paragraph and others will make spectral nested dissection faster.

Furthermore, a user would be willing to employ spectral nested dissection even if its running

time is greater than that of minimum-degree, say by a factor of five, if the quality of the

resulting ordering leads to a faster net factorization time. There are many contexts such as

numerical optimization where a matrix with the same structure but with different numerical

values must be factored repeatedly. In such contexts, the costs of computing a good ordering

can be amortized over the number of factorizations.

5. Conclusions. We have described a spectral nested dissection algorithm (SND) to

compute orderings appropriate for parallel factorization of sparse, symmetric matrices. The

algorithm makes use of spectral properties of the Laplacian matrix associated with the given

matrix to compute separators. This algorithm has the potential of computing qualitatively

different separators than previous combinatorial algorithms, since it makes use of global

information about the adjacency graph, while the latter use local information about neigh-

borhoods of vertices.

Our experimental results show that SND computes orderings that compare favorably

with the Multiple-Minimum degree (MMD) and Sparspak nested dissection (AND) algo-

rithms. The fill incurred by the spectral algorithm is quite close to that suffered by the

MMD algorithm, and much smaller than the AND algorithm. We have also compared these

algorithms with respect to four measures of good parallel orderings: elimination tree height,

height and weight balances of the elimination trees, and clique tree height. The spectral
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algorithm clearly outperforms the MMD and AND algorithms with respect to these mea-

sures. For instance, for the large problems in our test set, elimination tree heights of the

spectral orderings are almost half that obtained from the MMD orderings. For the measures

of balance, the ratios are even more favorable towards the spectral algorithm.

We have also compared the performance of the orderings within the context of a su-

pernodal multifrontal factorization code (developed at Cray) on a Cray Y-MP with eight

processors. The spectral orderings lead to faster numerical factorization than the MMD

orderings. Factorization times from spectral orderings also depend gracefully on the param-

eters that control the concurrency in the code. This behavior is important, since optimal a

priori choices of these parameters are difficult to make. Factorization times from the MMD

orderings show an irregular dependence on these parameters.

A preliminary implementation of SND requires about five to twelve times the running

time of the MMD algorithm. In future work, we intend to make SND faster by incorporating

several enhancements including the parallel computation of the eigenvectors. Spectral or-

derings will be compared with the other orderings for numerical factorization on distributed-

memory multiprocessors. A better understanding of the theoretical underpinnings of the

spectral separator algorithm is another priority.
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